Sealant Selection Guide # **100% Silicone Sealant Comparison Chart** | Product Name | UL Certified | Dispense
Nozzle/
Cap? | NSF
Certified | FDA
Compliant | Case
Packaging | Solids - % | Tensile
(psi) | Elongation (%) | Temp Range | Standard
Colors | Cure
Type | Package
Type(s) | |-----------------------------|--------------|---|------------------|------------------|------------------------------|------------|------------------|----------------|--|-------------------------------------|--------------|--------------------------------------| | All Purpose | YES | Premium
Removable
Nozzle &
Cap | YES
ANSI 51 | YES | Premium
White Logo
Box | >=89% | 325 | 550 | -75F to 350F
continuous
400F
intermittent | White
Clear
Black
Aluminum | Acetoxy | Sq Tube
Cartridge
Pail
Drum | | General Purpose | NO | Fixed Nozzle | YES
ANSI 51 | YES | Tall Kraft Box | >=85% | 288 | 521 | -75F to 350F
continuous
400F
intermittent | White
Clear
Black
Aluminum | Acetoxy | Cartridge
Sausage
Pail
Drum | | HVAC/R | NO | Special
Removable
Nozzle &
Cap | YES
ANSI 51 | YES | Tall Kraft Box | >=85% | 285 | 500 | -75F to 350F
continuous
400F
intermittent | White
Clear
Black
Aluminum | Acetoxy | Cartridge
Pail
Drum | | Neutral Cure | NO | Premium
Removable
Nozzle &
Cap | NO | NO | Premium
White Logo
Box | >=85% | 255 | 550 | -75F to 350F
continuous
400F
intermittent | White
Clear
Black | Oxime | Cartridge
Pail
Drum | | Extreme High Temperature | YES | Premium
Removable
Nozzle &
Cap | YES
ANSI 51 | YES | Premium
White Logo
Box | >=88% | 300 | 500 | -85F to 500F
continuous
600F
intermittent | Red | Acetoxy | Sq Tube
Cartridge
Pail
Drum | | Industrial High Temperature | NO | Fixed Nozzle | YES
ANSI 51 | YES | Tall Kraft Box | >=85% | 275 | 475 | -85F to 500F
continuous
600F
intermittent | Red | Acetoxy | Cartridge
Pail
Drum | | Fluorosilicone Sealant | NO | SEMCO
Nozzle | NO | NO | Premium
White Logo
Box | >=90% | 900 | 440 | -85F to 482F
continuous
575F
intermittent | White | Acetoxy | SEMCO
Pail
Drum | #### **Underwriters Laboratory** UL Certified sealants bear the following component listing mark: #### Food Equipment/Applications: NSF/ANSI 51 Certified Sealants bear the following NSF Mark: ### **General Properties of Silicone Sealants:** - 1.) Silicones are NOT paintable (won't accept paint) - 2.) Silicones have exceptional UV resistance (much better than organic sealants) - 3.) Silicones have a 20-30 year in service life in many applications (extremely long lasting) - 4.) Silicone Sealants have a very wide service temperature range - 5.) Silicone Sealants require atmospheric moisture to cure, therefore low humidity results in a slower curing of the material vs high humidity conditions ## **Different Cure Types (Defined)** | Cure Mechanism | By Product | Advantages | Disadvantages | |----------------|---------------------|---|--| | Acetoxy | Acetic Acid | Good Adhesion
High Temperature
Food Application Certifications (NSF, FDA)
Low Health & Safety Issues | Corrosive during cure
Pungent Odor | | Oxime | Methylethylketoxime | Good Adhesion to Plastics & Certain other
substrates
Low Corrosive
Low Odor | Health & Safety Issue
Not For Food Service Applications | ## **Uncured Material** Rheology - defining the flow characteristics of the uncured material. **PASTE:** A non slump material that maintains its profile FLOWABLE: A liquid that finds its own level **THIXOTROPIC:** Flows when under pressure but then holds its profile Skin Time: The time it takes for the sealant to form a skin that is dry to the touch (on the exterior surface of the sealant only) **Cure Time:** The time it takes for the sealant to cure through. *Note:* With all RTV's, the chemical reaction will continue after initial cure time for several days until all physical properties are achieved. For this reason, caution should be taken before testing or exerting undue demands on the adhesive until full properties are achieved. ### **Cured Material** Hardness - the final hardness of the cured sealant (measured in Shore A durometer) Elongation - The percentage the material will stretch from it's original state before breaking stated as a percentage (i.e. 500% means that a 1" piece of material will stretch to 5" before breaking) **Tensile** - Force required to break the cured material under tension **Surface Preparation:** Surface preparation is critical to proper adhesion and success with the product selected. In order to get proper adhesion, surfaces should be clean, free of any foreign matter and dry. Proper surface preparation follows. - * For metals, glass, plastics and other similar materials prepare the surface by applying a solvent such as acetone, IPA, mineral spirits, etc... Be sure to follow all safety precautions when using solvents and ensure proper ventilation. - * For porous surfaces, use sandpaper or wire brush where needed to ensure a clean surface. - * Do not use Silicone RTV in applications for continuous or complete water submersion. - * Do not clean substrates with detergent soap and water as soap residue will negatively affect adhesion - * For difficult to bond substrates: mechanical roughening, chemical treatment, use of primers, corona treatment or plasma treatment may be required. Consult with JIT Silicones technical staff for additional guidance Substrate(s): Surfaces which the sealants are being adhered to. # **General Substrate Adhesion Guide** | | All Purpose | General Purpose | HVAC/R | Neutral Cure | Extreme High
Temp | Industrial High
Temp | Fluorosilicone | |----------------------------|-------------|-----------------|--------|--------------|----------------------|-------------------------|----------------| | Substrate (0-5: 5 is BEST) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | ABS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Acrylic | 3 | 3 | 3 | 5 | 3 | 3 | 3 | | Anodized Aluminum | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | Brass | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | Carbon Steel | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | Copper | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | EPDM | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | Galvanized Steel | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | Glass | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Milled Steel | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | Milled Aluminum | 3 | 3 | 3 | 4 | 3 | 3 | 3 | | Neoprene | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Polycarbonate | 4 | 4 | 4 | 5 | 4 | 4 | 4 | | Phenolic G-10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Polypropylene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Polystyrene | 0 | 0 | 0 | 5 | 0 | 0 | 0 | | PVC | 0 | 0 | 0 | 3 | 0 | 0 | 0 | | Silicone Rubber | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Stainless Steel | 2 | 2 | 2 | 5 | 2 | 2 | 2 | | Wrought Iron | 3 | 3 | 3 | 5 | 3 | 3 | 3 | **IMPORTANT NOTE:** The above chart is offered as a general guide for adhesion of RTV Silicones. This chart is not meant as a replacement for customer testing to validate suitability in specific applications, nor a guarantee of performance with specific substrates. Ultimate suitability of materials in applications is fully the responsibility of the customer. # JIT Silicones Plus P.O. Box 24 Mars, PA 16046 www.jitsiliconesplus.com Ph. 855-548-7587 / 855-JIT-PLUS Fax 888-530-3780 e-mail: info@jitsiliconesplus.com